

Product Databook

- □ Aluminum Hydroxide
- 🗆 Aluminum Oxide Alumina
- 🗆 High Purity Alumina HPA
- □ Activated Alumina / Hydraulic Alumina

Table of Contents

1.	Aluminum Hydroxide	
	≻ Generic Grade	Page 2
	≻ Fine, Very Fine, Low-Soda	Page 2
	> High-Whiteness	Page 3
	\gg High-Whiteness (Surface Treated)	Page 3
	≻ Low Viscosity	Page 4
2.	Aluminum Oxide - Alumina	
	≻ Normal Soda / Unground	Page 5
	≻ Normal Soda / Ground	Page 6
	≻ Low Soda / Unground	Page 6
	≻ Low Soda / Ground	Page 7
	Low Soda / Ground (for Functional Fillers)	Page 8
	≻ Normal Soda / Easy-sintering (Reactive)	Page 9
	> Low Soda / Easy-sintering (Reactive)	Page 10
3.	High Purity Alumina - HPA	
	> AKP Series	Page 11
	≻ Advanced Alumina (AA)	Page 12
	\succ Gamma HPA/HIT Series/High Bulk Density for Single Crystal	Page 13
4.	Activated Alumina / Hydraulic Alumina	
	Activated Alumina : Powder Shape	Page 14
	\succ Activated Alumina : Spherical Shape	Page 15
	≻ Hydraulic Alumina	Page 16

- <Important Notice for Users of this Databook>

 All data in this data book is typical and not guaranteed. The typical properties of all the listed products in this databook are subject to change without prior notice due to continual improvements.
- Applications mentioned in this databook are examples without any guarantee. Fitness for any particular purpose should be verified by customers. (2)
- (3) Please refrain from using products in this databook for medical and food applications.

1. Aluminum Hydroxide

Sumitomo Aluminum Hydroxides product portfolio is quite wide to serve diverse industries. Our precipitation process in Bayer Process enables us to fine-tune particle sizes and impurity levels to serve various industries.

Typical P	roperties	Product	C-12
<u>د</u>	H2O	[%]	9
itio	Al(OH)3*	[%]	99.8
in iso	Fe2O3*	[%]	0.01
5 g	SiO2*	[%]	0.01
č	Na20*	[%]	0.18
Loose Bu	lk Density	[g/cm3]	1.1
Packed B	ulk Density	[g/cm3]	1.4
True Spe	cific Gravity		2.42
D50(MT-3	300, Laser Diffraction)	[µm]	50
+75µm		[%]	5
	Bulk		Truck, Vessel
Packing	Big Bag		1,000kg
	Paper Bag	25kg	

Generic Grade

*Analysis after dried. Calculated as oxide after analyzing Fe, Si, Na contents. Al(OH)3 = 100 - (Fe2O3+SiO2+Na2O)

C-12 : Extremely low impurity concentration and small particle size. Excellent reactivity.

Fine, Very Fine, Low-Soda

c, very mic, zow bodu									
	Product	Fi	ne	Very Fine		Low Soda			
roperties		C-310	C-305	C-301N	CL-310	CL-303	C-302A		
H2O	[%]	0.05	0.07	0.2	0.04	0.07	0.12		
Al(OH)3*	[%]	99.8	99.8	99.8	99.9	99.9	99.8		
Fe2O3*	[%]	0.01	0.01	0.01	0.01	0.01	0.01		
SiO2*	[%]	0.01	0.01	0.01	0.01	0.01	0.01		
Na2O*	[%]	0.12	0.12	0.2	0.07	0.04	0.11		
D50(MT-3300, Laser Diffraction)		10	5.5	1.5	12	4	2.4		
+45µm		<0.1	<0.1	<0.1	0.3	<0.1	<0.1		
Loose Bulk Density		0.7	0.5	0.3	0.7	0.6	0.4		
ulk Density	[g/cm3]	1.3	1.2	0.6	1.3	1.2	0.9		
Absorption	[ml/100g]	35	31	54	34	39	39		
55	[%]	-	95	96	92	-	96		
ific Surface Area	[m2/g]	1.0	1.5	4	1.1	1.5	2.5		
Conductivity**	[µS/cm]	-	•	-	18	20	100		
cific Gravity		2.42							
Refractive Index			1.57						
Hardness [Mohs]			3						
Big Bag				500kg, 1,000kg					
Paper Bag				25kg					
	roperties H2O Al(OH)3* Fe2O3* SiO2* Na2O* 3300, Laser Diffraction) Ik Density ulk Density Absorption is ific Surface Area Conductivity** cific Gravity e Index Big Bag Paper Bag	Product Produc	Product Fi roperties C-310 H2O [%] 0.05 Al(OH)3* [%] 99.8 Fe2O3* [%] 0.01 SiO2* [%] 0.01 Na2O* [%] 0.12 3300, Laser Diffraction) [µm] 10 [%] <0.1	Product Fine roperties C-310 C-305 H2O [%] 0.05 0.07 Al(OH)3* [%] 99.8 99.8 Fe2O3* [%] 0.01 0.01 SiO2* [%] 0.01 0.01 Na2O* [%] 0.12 0.12 3300, Laser Diffraction) [µm] 10 5.5 [%] <0.1	Product Fine Very Fine roperties C-310 C-305 C-301N H2O [%] 0.05 0.07 0.2 Al(OH)3* [%] 99.8 99.8 99.8 Fe2O3* [%] 0.01 0.01 0.01 SiO2* [%] 0.12 0.12 0.2 Na2O* [%] 0.12 0.12 0.2 3300, Laser Diffraction) [µm] 10 5.5 1.5 [%] <0.1	Product Fine Very Fine roperties C-310 C-305 C-301N CL-310 H2O [%] 0.05 0.07 0.2 0.04 Al(OH)3* [%] 99.8 99.8 99.9 99.9 Fe2O3* [%] 0.01 0.01 0.01 0.01 SiO2* [%] 0.12 0.12 0.2 0.07 Na2O* [%] 0.12 0.12 0.2 0.07 SiO0, Laser Diffraction) [µm] 10 5.5 1.5 12 [%] <0.1	Product Fine Very Fine Low Soda roperties C-310 C-305 C-301N CL-310 CL-303 H2O [%] 0.05 0.07 0.2 0.04 0.07 Al(OH)3* [%] 99.8 99.8 99.8 99.9 99.9 Fe2O3* [%] 0.01 0.01 0.01 0.01 0.01 0.01 SiO2* [%] 0.12 0.12 0.2 0.07 0.4 SiO0, Laser Diffraction [µm] 10 5.5 1.5 12 4 [%] <0.1		

*Analysis after dried. Calculated as oxide after analyzing Fe, Si, Na contents. Al(OH)3 = 100 - (Fe2O3+SiO2+Na2O)

C-301N

20µm

CL-303 4µm

20µm Page 2 of 16

High Whiteness

Typical Pro	perties	Product	CW-350	CW-308	
ç	H2O	[%]	0.03	0.06	
cal	Al(OH)3*	[%]	99.9	99.8	
i mi	Fe2O3*	[%]	0.01	0.01	
j č	SiO2*	[%]	0.01	0.01	
Ŭ	Na2O*	[%]	0.06	0.17	
D50(MT-33	00, Laser Diffraction)	[µm]	43	10	
+45µm		[%]	-	<0.1	
Loose Bulk	Density	[g/cm3]	1.0	0.6	
Packed Bul	k Density	[g/cm3]	1.4	1.3	
DOA Oil Ab	sorption	[ml/100g]	29	34	
True Specif	ic Gravity		2.42		
Refractive	Index		1.57		
Hardness		[Mohs]	3		
De alvia a	Big Bag		500kg, 1,000kg		
Packing	Paper Bag		-	25kg	

*Analysis after dried. Calculated as oxide after analyzing Fe, Si, Na contents. Al(OH)3 = 100 - (Fe2O3+SiO2+Na2O)

High Whiteness (Surface Treated)

Product Typical Properties			CW-350B	CWL-325J	CW-308B
c	H2O	[%]	0.03	0.05	0.05
cal	Al(OH)3*	[%]	99.9	99.7	99.7
i më	Fe2O3*	[%]	0.01	0.01	0.01
E C	SiO2*	[%]	0.04	0.15	0.12
ŭ	Na2O*	[%]	0.05	0.07	0.15
D50(MT-33	00, Laser Diffraction)	[µm]	51	20	10
DOA Oil Ab	sorption	[ml/100g]	28	22	32
True Speci	fic Gravity		2.42		
Refractive	Index		1.57		
Hardness [Mohs]		[Mohs]	3		
Dacking	Big Bag		500kg, 1,000kg		
FACKING	Paper Bag		- 25kg		

CW-308

Low Viscosity

*Analysis after dried.

Typical Pro	perties	Product	CW-325LV	CW-310LV	
c	H2O	[%]	0.04	0.05	
cal itio	Al(OH)3*	[%]	99.9	99.9	
i me	Fe2O3*	[%]	0.01	0.01	
j Č	SiO2*	[%]	0.00	0.00	
Ŭ	Na2O*	[%]	0.07	0.06	
D50(MT-330	00, Laser Diffraction)	[µm]	21	10	
+45µm		[%]	-	-	
BET Specifi	c Surface Area	[m2/g]	0.8	1.7	
Electric Cor	nductivity	[µS/cm]	20	20	
Loose Bulk	Density	[g/cm3]	1.0	0.7	
Packed Bulk	Density	[g/cm3]	1.4	1.4	
DOA Oil Abs	orption	[ml/100g]	24	28	
True Specif	ic Gravity		2.42		
Refractive Index			1.57		
Hardness		[Mohs]	3		
Dealving	Big Bag		1,000kg		
Packing	Paper Bag	25kg			

Calculated as oxide after analyzing Fe, Si, Na contents. Al(OH)3 = 100 - (Fe2O3+SiO2+Na2O)

CW-325LV

40µm

CW-310LV

40µm

Click the movie to learn viscosity performance difference between each product. <Test Conditions>

Observed the compound's behavior 100 seconds while pressing with 50g weight.

Aluminum Hydroxide:60vol%Resin:SiliconeCompound Volume:1.5gWeight:50g

<Movie Operating Conditions> PC only. Download this PDF file necessary.

2. Aluminum Oxide - Alumina

Sumitomo Chemical's Calcined Aluminas are produced in various levels of calcination level/soda content and supplied in both unground and ground shapes to satisfy diverse customer requirements.

ormal S						
Typical P	rope	erties	Product	A-21	A-26	A-210
	H2C)	[%]	0.04	0.1	0.04
alion	L.0	.I	[%]	0.05	0.1	0.05
nic Ssit	Fe2	03	[%]	0.01	0.01	0.01
up du	SiO	2	[%]	0.01	0.01	0.02
D S	Na2	0	[%]	0.26	0.26	0.22
-	Al2	03	[%]	99.7	99.7	99.7
Specific	Grav	ity	[g/cm3]	3.95	3.90	3.95
D50 (MT-	3300), Laser Diffraction)	[µm]	50	50	95
α Crystal	Size		[µm]	2~4	<1	2~4
Bulk Den		Green	[g/cm3]	0.7	0.9	0.9
BUIK Den	isity	Packed	[g/cm3]	1.2	1.2	1.2
Packing P		Big Bag			1,000kg	
		Paper Bag			25kg	

A-21 : High calcined. Used for initial buffing stages of stainless steel.

A-26 : Smaller α crystal size with lower calcination than A-21. Used as a reactive alumina when ground.

A-210 : High calcined. Low dust and good fluidity.

A-21

H A-26

20µm

ł

20µm

A-210

20µm

AM-21

AM-210

Normal Soda / Ground

Typical Pr	operties	Product	AM-21	AM-210	AM-210-02	AM-27	AM-28B	
	H20	[%]	0.06	0.06	0.05	0.1	0.05	
le le	L.O.I	[%]	0.05	0.05	0.05	0.1	0.05	
siti	Fe2O3	[%]	0.01	0.01	0.01	0.01	0.01	
n po	SiO2	[%]	0.02	0.02	0.02	0.01	0.02	
υð	Na2O	[%]	0.26	0.22	0.22	0.26	0.25	
	AI2O3	[%]	99.7	99.7	99.7	99.7	99.7	
Specific G	ravity	[g/cm3]	3.95	3.95	3.95	3.90	3.95	
D50 (MT-3300, Laser Diffraction) [µm]		n) [µm]	4.8	4.8	7.9	2.8	19	
α Crystal S	Size	[µm]	2~4	2~4	2~4	0.3	3~5	
Bulk Don	Green	[g/cm3]	0.7	0.7	-	0.6	0.6	
Duik Den	Packed	[g/cm3]	1.3	1.3	-	1.3	1.6	
Oil Absorp	tion Boiled	Linseed Oil [ml/100g]	16	-	-	27	24	
Green Den	sity*	[g/cm3]	2.26	2.26	-	-	-	
Fire Density* [g/cm3]		3.72	3.72	-	-	-		
	Big Bag		1,000kg					
Раскіпд	Paper Bag	Paper Bag		25kg				

* Flux 4%, 49MPa(500kg/cm2), sample sintered at 1600 degC.

AM-21 / AM-210 : Ground high calcined alumina. Used for intermediate buffing stages of stainless steel.

AM-210-02 : A variation of AM-210 with bigger particle size and bi-modal particle size distribution. Used for both initial and intermediate buffing stages of stainless steel.

AM-27 : Finely ground for mirror surface buffing stages of stainless steel.

AM-28B : Specially developed for intermediate buffing stages of stainless steel. Some of coarse particles crumble to fine particles.

Low Soda / Unground

Typical P	rope	erties	Product	AL-41-01	AL-43A	AL-44
	H20)	[%]	0.05	0.05	0.05
al ion	L.0	.I	[%]	0.05	0.05	0.05
nic, sit	Fe2O3		[%]	0.01	0.01	0.01
ner	SiO2		[%]	0.04	0.04	0.04
τg	Na2	0	[%]	0.04	0.02	0.02
•	Al2	03	[%]	99.9	99.9	99.9
D50 (MT-	3300), Laser Diffraction)	[µm]	50	50	50
α Crystal Size		[µm]	1~2	2~3	3 ~ 4	
Dealitier		Big Bag			1,000kg	
Packing		Paper Bag		25kg		

Molding density and firing shrinkage vary between these products due to α crystal size differences.

Low Soda / Ground

Typical P	Properties	Product	ALM-41-01	ALM-43	AL-41DBM-01
	H2O	[%]	0.08	0.07	0.08
la la	L.O.I	[%]	0.07	0.05	0.07
siti	Fe2O3	[%]	0.01	0.01	0.01
ner odr	SiO2	[%]	0.04	0.05	0.04
5 5	Na2O	[%]	0.04	0.03	0.04
Ŭ	Al2O3	[%]	99.9	99.9	99.9
D50 (MT	3300, Laser Diffraction)	[µm]	2.2	3.7	1.3
BET Spec	rific Surface Area	[m2/g]	1.8	1.2	2.6
α Crystal	Size	[µm]	1~2	2~3	1~2
Green D	ensity*	[g/cm3]	2.23	2.27	2.23
Fire Den	sity*	[g/cm3]	3.71	3.67	3.71
Linear Shrinkage*		[%]	16	15	15
De aluia i	Big Bag	Big Bag		1,000kg	
Packing	Paper Bag		25kg		

*Flux 4%, 49MPa (500kg/cm2), sample sintered at 1600 degC.

ALM-41-01 / ALM-43 : Ground down close to $\alpha\,$ crystal sizes.

AL-41DBM-01 : PSD of ALM-41-01 shifted to smaller side. Used for LTCC and thermal conductive fillers.

SU1510 12.0kV 12.0mm x10.0k SE 2016/09/23

AL-41DBM-01

Low Soda / Ground (for Functional Fillers)

Product Typical Properties			AL-M73A	AL-S43B	AL-32B	
	H2O	[%]	0.07	0.07	0.04	
la l	L.O.I	[%]	0.05	0.05	0.04	
nic. sit	Fe2O3	[%]	0.01	0.01	0.01	
ner Der	SiO2	[%]	0.05	0.05	0.05	
τg	Na2O	[%]	0.03	0.04	0.02	
Ũ	Al2O3	[%]	99.9	99.9	99.9	
D50 (MT-	3300, Laser Diffraction)	[µm]	3.0	3.1	3.4	
BET Spec	ific Surface Area	[m2/g]	1.5	1.3	1.6	
+45µm		[µm]	0.0	0.0	0.0	
α Crystal Size [μm]		[µm]	2~3	1.5~2.5	3~4	
Dacking	Big Bag			-		
Packing	Paper Bag		20kg	25kg		

AL-M73A : Top-cut version of ALM-43.

AL-S43B: PSD of ALM-43 narrowed.

AL-32B : Big $\alpha\,$ crystal size, and easy to mix with resins.

AL-M73A

5µm

5µm

AL-S43B

Normal Soda / Easy Sintering (Reactive)

Typical F	Properties	Product	AMS-5020F	AMS-90B	
	H2O	[%]	0.1	0.1	
al	L.O.I	[%]	0.1	0.3	
nic. sit	Fe2O3	[%]	0.01	0.01	
ner of	SiO2	[%]	0.02	0.01	
τg	Na2O	[%]	0.23	0.22	
Ū	Al2O3	[%]	99.7	99.7	
Specific	Gravity	[g/cm3]	3.95	3.90	
D50 (MT	-3300, Laser Diffraction)	[µm]	3.2	0.7	
α Crystal	Size	[µm]	0.3~4	0.3	
Green De	ensity*	[g/cm3]	2.44	2.07	
Fire Density*		[g/cm3]	3.40	3.82	
	Big Bag		1,00)0kg	
Packing	Paper Bag	Paper Bag		25kg	

* No flux added, 29.4MPa (300kg/cm2), sample sintered at 1600 deg C.

AMS-5020F : Enables high filling ratio because of bi-modal and broad particle size distribution. Typically used for castable plasticizer and low shrinkage ceramics.

AMS-90B : Mono-modal particle size distribution, ground down to 0.7µm.

Low Soda / Easy Sintering (Reactive)

Typical F	Properties	Product	AES-12	AES-11	AES-11C	AES-11H	AES-23
	H2O	[%]	0.1	0.1	0.1	0.1	0.1
Ę	L.O.I	[%]	0.1	0.2	0.1	0.2	0.1
Chemical mpositio	Fe2O3	[%]	0.01	0.01	0.01	0.01	0.01
	SiO2	[%]	0.03	0.03	0.03	0.04	0.04
	Na2O	[%]	0.04	0.04	0.04	0.04	0.04
2 8	MgO*	[%]	-	0.11	0.05	0.04	-
	Al2O3	[%]	99.9	99.9	99.9	99.9	99.9
D50 (MT	-3300, Laser Diffraction)	[µm]	0.44	0.43	0.39	0.54	2.2
BET Spec	cific Surface Area	[m2/g]	6.9	6.7	5.5	6.3	3.4
α Crystal	Size	[µm]	0.3	0.3	0.3	0.3	0.3~4
Green De	ensity	[g/cm3]	2.22	2.22	2.20	2.20	2.57
Fire Density** [g/cm3			3.88	3.93	3.94	3.87	3.77
Linear Shrinkage** [%]			17	17	18	17	12
Packing	Paper Bag	25kg					

* MgO is an additive and not considered as an impurity in Al2O3. **No flux added, 29.4MPa (300kg/cm2), sample sintered at 1600 deg C.

AES-11/11C : Sub-micron size particles. Used for fine ceramic applications requiring 99% purity or higher.

AES-11H : Contains less re-agglomeration than AES-11 / 11C, and it makes slurry dispersion easier.

AES-12 : MgO not added. Also used as a sub-filler of thermal interface materials.

AES-23 : Thixotropic and low viscosity.

Page 10 of 16

3. High Purity Alumina - HPA

Sumitomo Chemical's High Purity Aluminas(HPA) are uniform fine powders characterized by highly pure and homogeneous crystal structure. We produce HPA by Aluminium Alkoxide Hydrolysis process.

		Product							
Typical P	roperties		AKP-15	AKP-20	AKP-30	AKP-50	AKP-53	AKP-700	AKP-3000
Crys	tal Structure		α	α	α	α	α	α	α
Pu	rity(Al2O3)	[%]	≧ 99.99	≧ 99.9 9	≧ 99.9 9	≧ 99.9 9	≧ 99.9 9	≧ 99.99	≧ 99.99
(D50 (MT3300)	[µm]	0.60	0.42	0.26	0.20	0.17	-	0.67
Loose Bulk Density		[g/cm3]	0.9	1.0	0.9	0.9	1.1	0.7	0.43
Tappe	Tapped Bulk Density		1.5	1.4	1.3	1.3	1.4	1.1	0.81
BET Spe	cific Surface Area	[m2/g]	3.6	4.6	7.4	11.1	13.7	17.8	4.4
	Si		20	16	9	10	36	8	3
	Na	1 [6	3	3	3	3	3	2
Impurity	Mg	[ppm]	3	3	2	2	6	1	1
	Cu		1	1	1	1	1	1	1
	Fe		2	2	2	2	3	3	2
	PE Bag		20kg	20kg	20kg	20kg	20kg		10kg
Packing	Pail Can							10kg	

AKP Series

High-strength and High-density Ceramics, Translucent Ceramics, Composite Materials, Additives for non-Oxide Ceramics, Abrasives, Ceramic Filter, Resin Filler, etc.

Insulation
layer of Li-
ion
Secondary
Battery

Application

AKP-3000

AKP-50

1µm

1µm

Sumitomo Chemical Advanced Aluminas are α -alumina single crystals with precisely controlled particle size distribution and almost-spherical polyhedral shape.

Advance	anced Alumina (AA)											
Proc Typical Properties		Product	AA-03	AA-04	AA-05	AA-07	AA-1.5	AA-2	AA-3	AA-5	AA-10	AA-18
Crystal structure			α	α	α	α	α	α	α	α	α	α
Purity((Al2O3)	[%]	≧ 99.99	≧ 99.99	≧ 99.99	≧ 99.99	≧ 99.99	≧ 99.99				
D! (MT3	50 3300)	[µm]	0.40	0.47	0.58	0.88	1.7	2.2	3.5	6.6	13.5	20.3
Loose Bulk Density [g/c		[g/cm3]	0.5	0.5	0.6	0.6	0.6	0.7	0.7	1.3	1.7	1.9
Tapped Bulk Density [[g/cm3]	0.9	1.0	1.1	1.2	1.5	1.5	1.5	2.0	2.3	2.4
BET Specific	Surface Area	[m2/g]	5.6	4.6	3.2	2.2	1.3	1.1	0.6	0.4	0.3	0.2
	Si	[ppm]	4	4	4	4	9	11	22	22	22	17
	Fe	[ppm]	2	2	2	2	3	2	3	2	2	2
Impurity	Na	[ppm]	3	3	3	3	3	3	3	3	3	3
	Mg	[ppm]	1	1	1	1	1	1	1	1	1	1
	Cu	[ppm]	1	1	1	1	1	1	1	1	1	1
Packing	PE Bag		20kg	20kg	20kg	20kg	20kg	20kg	20kg	20kg	20kg	
Packing	Pail Can											20kg

Application

High-strength and High-density Ceramics, Translucent Ceramics, Resin filler(Thermal Conductive Materials), Plasma Spray, Ceramic Filter, etc.

AA-04

Particle Size Distribution

Gamma HPA

		Product		AKP-G15		
Typical Pi	roperties		AKF-GU7	AKP-015		
Crystal S	structure		θ	Y		
Purity(Al2O3)		[%]	≧ 99.99	≧ 99.9 9		
Loose Bulk Density		[g/cm3]	-	0.13		
Tapped Bulk Density		[g/cm3]	0.3	0.16		
BET Specific Surface Area		[m2/g]	79.9	164		
	Si	[ppm]	3	2		
	Na	[ppm]	3	3		
Impurity	Mg	[ppm]	1	1		
	Cu	[ppm]	1	1		
	Fe	[ppm]	4	4		
Dealiter			20kg	10kg		
Packing			Cardboard Box	Cardboard Box		
Application			Resin Filler, Catalyst, etc.			

AKP-G07

0.1µm

HIT-60A

0.1µm

1µm

HIT Series

				-			
Typical Properties	Product	HIT-60A	HIT-82	HIT-100			
Crystal Structure		α	α	α			
Loose Bulk Density	[g/cm3]	0.8	1.0	0.9			
Tapped Bulk Density	[g/cm3]	1.1	1.3	1.2			
BET Specific Surface Area	[m2/g]	12.5	25.4	36.1			
Packing		15kg PE Bag	20kg Pail Can				
			·				
Applicati	on	Abrasive, etc.					

High Bulk Density for Single Crystal

Typical P	roperties	Product	AKX-5
Crystal S	structure		a
Purity	Al2O3)	[%]	≧ 99.99
Loose Bu	lk Density	[g/cm3]	1.8
Tapped Bu	ulk Density	[g/cm3]	-
BET Surf	ace Area	[m2/g]	1.1
	Si	[ppm]	9
	Na	[ppm]	3
Impurity	Mg	[ppm]	1
	Cu	[ppm]	1
	Fe	[ppm]	3
Dealling			100kg
Packing			Fiber Drum
	Applicati	on	Single Crystal

HIT-100

AKX-5

1mm

4. Activated Alumina / Hydraulic Alumina

ctivate	d Alu	mina : Powder Sh	ape						
			Product		Pov	vders		Chlomatog	raphy Grade
Typical	Prope	rties		KC-501	A-11	AC-11	AC-12R	KCG-30	KCG-1525W
	L.O.I		[%]	4.5	4.0	4.5	4.5	3.5	3.5
:al tion	Fe20)3	[%]	0.01	0.02	0.02	0.02	0.02	0.02
emic posi	SiO2		[%]	0.02	0.02	0.02	0.02	0.02	0.02
Ū Č	Na2O)	[%]	0.45	0.26	0.26	0.26	0.26	0.26
-	Al2O	3	[%]	99.5	99.7	99.7	99.7	99.7	99.7
	True	True Specific Gravity		-	3.1	3.1	3.1	3.1	3.1
cal rties	Appa (Pack	rent Specific Gravity (ed Bulk Density)	[g/cm3]	0.3	1.1	1.1	1.1	1.1	1.1
'hysi opei	D50		[µm]	1.5	40-50	80-100	100-200	40-50	80-100
d č	BET S	Specific Surface Area	[m2/g]	200	150	140	130	150	140
	Pore	Volume	[mL/g]	-	0.30	0.30	0.30	0.30	0.30
Paper Bag / PE Bag		Bag	-	25kg	25kg	•	-		
Packing	8	Pail Can		5kg	-	-	15kg	15kg	15kg
-		Drum		50kg	-	-	180kg	-	-

	organic acid	PO4 ⁻³	F-
	water		
♦ ح 8	alcohol	F-	
to t rpe	amine		
Easy adso	mercaptan	[Fe (CN) ₆] ⁻⁴	
	aldehyde	SO -2	CI⁻
	ketone	304	
	ester	[EE (CNI) 1-3	
	ether		
e .	aromatic hydrocarbon	Cr ₂ O ₇ ⁻²	Br⁻
to I ped	sulfide	CI-	
cult	organic halogen	Ci	
Jiffi ad	unsaturated hydrocarbon	MnO₄ [−]	
	saturated hydrocarbon	CIO ₄ -	ŀ

Activated Alumina can be used as an adsorption refining agent, especially to refine non-polar solvents.

In general, the more polarity and heavier molecular weight, the better adsorption effect would be obtained.

Adsorption order example as follows. -SO3H > -COOH > -OH, -NH2, -SH > -CHO > -CO > -COOR > -S-, -O- > -X > Unsaturated hydrocarbons > Saturated hydrocarbons

Adsorption performance can be measured in terms of adsorption rate and transmission rate of the picric acid by sending a benzene solution of picric acid through a column filled with activated alumina.

Activated Alumina : Spherical Shape

		Product	KHS	KI	HA		КНО		NKHO	
Typical P	roperties		-46	-46	-24	-46	-24	-12	-24	
nce	Form		Spherical							
eara	Color		White							
App	Particle Size	[mm]	4-6	4-6	2-4	4-6	2-4	1-2	2-4	
	L.O.I	[%]	3.5	1.	9	1.5		2.4	1.8	
al tion	Fe2O3	[%]	0.02	0.02						
emic	SiO2	[%]	0.02	0.02						
Con	Na2O	0.04			0.	26				
	AI2O3	99.9	99.7							
al ies	Bulk Density	[kg/L]	0.60	0.73	0.74	0.80	0.83	0.85	0.61	
pert	Pore Volume	[mL/g]	0.64	0.51 0.43				0.62		
Pro P	BET Specific Surface Ar	ea [m2/g]	165	10	60	1!	50	210	170	
anical ngth	Attrition Loss	[%]	0.3	0.	4	0.	4	0.2	0.2	
Mecha	Crushing Strength	Crushing Strength [daN]		26	13	33	18	5	5	
	De aldre a	Drum	120kg	130kg		150kg			120kg	
	Packing	Square Can	10kg	10)kg	15kg			10kg	

			Product		NK	(HD		K	HD	HD	FD
Typical P	roperties			-46	-24	-46HD	-24HD	-46	-24	-13	-24
nce	Form						Sphe	erical			
eara	Color			White							
App	Particle Size		[mm]	4-6	2-4	4-6	2-4	4-6	2-4	1-2	2-4
	L.O.I		[%]	6	.4	5	.9	5.	4	6.1	6.3
al tion	Fe2O3		[%]		0.02						
emic posit	SiO2	[%]				0.	02				
င် ဧ	Na2O		[%]				0.	26			
	AI2O3	[%]	99.7								
al ies	Bulk density		[kg/L]	0.60	0.64	0.74	0.77	0.82	0.86	0.80	0.68
pert	Pore volume		[mL/g]	0.60 0.45		0.	38	0.45	0.55		
Pro Pr	BET Specific Surface A	rea	[m2/g]		290			280		290	280
anical ngth	Attrition Loss		[%]	0.	3	0.	3	0.2		0.4	0.2
Mecha	Crushing Strength		[daN]	10	5	30	16	30	16	5	7
ion	Effluent Gas Moisture		[gH2O/m3]	0.0	03	0.0	003	0.0	003		0.003
sorpt		10% RH	[%]	5.7	5.7	5.8	6.1	5.3	5.5		5.8
sbA c	Adsorption Capacity	50% RH	[%]	15.5	16.0	15.7	16.7	13.6	14.8		16.0
H2(90% RH	[%]	37.8	39.3	37.0	38.2	34	34.1		37.0
Decking		D	rum	120	Okg	150kg		160kg		150kg	120kg
Packing		Squa	are Can	10	kg	15	ikg	15	ikg	-	10kg

KHD-24

Hydraulic Alumina

Typical Pro	operties		Product	BK-112
	L.O.I		[%]	6.6
tion	Fe203		[%]	0.05
emic	SiO2		[%]	0.01
చ్ క్ర	Na20	[%]	0.25	
	AI2O3	[%]	99.7	
al	True specific gravity		3.0	
nysic pert	Apparent specific gravity (Packed bulk	density)	[g/cm3]	1.0
La se	Mean particle size		[µm]	16
		Dr	um	150kg
Packing		Pai	l Can	15kg
		Pape	er Bag	20kg

An alumina powder with a large surface area and some crystal water.

Used as a binder for refractories instead of alumina cement due to large caking capacity and plasticity.

Condition/setting time of the hydraulic alumina and water mixture

Water Volume (g/100g-Al2O3)	Kneaded material condition	Setting Time* (min.)
60	Dry	-
70	Impossible to knead	-
75	Creamy	-
80	Creamy	15
90	Slurry with good fluidity	20

* Setting time is determined by JIS R 5210 needle penetration method (slurry thickness 38mm). Distance between the slurry bottom and the needle is 25mm.

Plant & Office Location / Contact

Aluminum Hydroxide as a flame retardant for CCL.

Aluminum Hydroxide as a filler for solid surface.

CONTACTS for Sales and Technical Information

Aluminum Hydroxide / Alumina / High Purity Alumina-HPA

 SUMÍTOMO CHEMICAL ^{Creative Hybrid Chemistry} Alumina Products Dept. / High Purity Alumina Dept. 2-7-1, Nihonbashi, Chuo-ku, Tokyo, 103-6020, Japan TEL +81 3 5201 0259 FAX +81 3 5201 0460

Activated Alumina / Hydraulic Alumina Sumika Alchem Co., Ltd. 1-8, Nihonbashi Koamicho, Chuo-ku, Tokyo, 103-0016, Japan TEL +81 3 6837 9340 FAX +81 3 6837 9341

