Thermal Conductivity Comparison in Silicone

(All AA combination v.s. all conventional alumina combination)

Sumitomo Chemical's Advanced Alumina (AA* series) products are single crystal α -alumina and are often used for applications where thermal dissipation is required.

• Using AA-18, AA-3, and AA-04\ as filler will increase thermal conductivity by >20%!

 0.3μ , 5μ , 45μ ... conventional alumina

	Coarse	Middle	Fine
A	AA-18	ΑΑ-3	AA-04
B	45µ	5μ	0.3μ

Silicone Resin: SYLGARD 527 (Dow Corning Toray)
Silane Coupling Agent: Z6210 (Dow Corning Toray)

Thermal Conductivity: Hot Disk Method

Thermal Conductivity Comparison in Epoxy

Epoxy resins typically exhibit low thermal conductivity and this limits their application for electronics.

• Using Sumitomo Chemical's **Advanced Alumina** (**AA* series**) as a filler will significantly increase thermal conductivity.

 0.3μ , 5μ , 70μ ... conventional alumina

	Coarse	Middle	Fine
A	70u	AA-3	AA-04
B	<mark>70µ</mark>	5µ	AA-04
C	70µ	5µ	0.3μ

Epoxy Resin Silane Coupling Agent

Thermal Conductivity: Lazer Flush Analyzer

